Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Journal of clinical medicine ; 12(5), 2023.
Article in English | EuropePMC | ID: covidwho-2252534

ABSTRACT

The coronavirus SARS-CoV2 disease (COVID-19) is connected with significant morbidity and mortality (3.4%), disorders in hemostasis, including coagulopathy, activation of platelets, vascular injury, and changes in fibrinolysis, which may be responsible for an increased risk of thromboembolism. Many studies demonstrated relatively high rates of venous and arterial thrombosis related to COVID-19. The incidence of arterial thrombosis in severe/critically ill intensive care unit–admitted COVID-19 patients appears to be around 1%. There are several ways for the activation of platelets and coagulation that may lead to the formation of thrombi, so it is challenging to make a decision about optimal antithrombotic strategy in patients with COVID-19. This article reviews the current knowledge about the role of antiplatelet therapy in patients with COVID-19.

2.
J Clin Med ; 12(5)2023 Mar 04.
Article in English | MEDLINE | ID: covidwho-2252535

ABSTRACT

The coronavirus SARS-CoV2 disease (COVID-19) is connected with significant morbidity and mortality (3.4%), disorders in hemostasis, including coagulopathy, activation of platelets, vascular injury, and changes in fibrinolysis, which may be responsible for an increased risk of thromboembolism. Many studies demonstrated relatively high rates of venous and arterial thrombosis related to COVID-19. The incidence of arterial thrombosis in severe/critically ill intensive care unit-admitted COVID-19 patients appears to be around 1%. There are several ways for the activation of platelets and coagulation that may lead to the formation of thrombi, so it is challenging to make a decision about optimal antithrombotic strategy in patients with COVID-19. This article reviews the current knowledge about the role of antiplatelet therapy in patients with COVID-19.

3.
Case Rep Hematol ; 2022: 7805900, 2022.
Article in English | MEDLINE | ID: covidwho-2020535

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute complex systemic disorder caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).While SARS-CoV-2 is known to cause significant pulmonary disease, various extrapulmonary manifestations of COVID-19 have also been reported. Growing evidence suggests that COVID-19 is associated with coagulopathy leading to micro and macrovascular complications. Although in patients with COVID-19, venous thromboembolic events are more frequent, arterial thrombosis also occurs at an increased rate. These often lead to acute life-threatening ischemia, which requires urgent diagnosis and treatment. We present case reports of two patients with an abnormal thrombus formation in the thoracic aorta who recently overcame COVID-19, which led to systemic embolism and splenic infarction. Ambulatory oral factor Xa inhibitor therapy led to aortic thrombosis resolution in both patients.

4.
The EPMA Journal ; : 1-25, 2022.
Article in English | EuropePMC | ID: covidwho-1989718

ABSTRACT

Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmonary embolism, and/or a combination of both. Therefore, thromboembolism can affect both – the central and peripheral veins. Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to protect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually, new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients (secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet protection specifically relevant for COVID-19-affected patient groups.

5.
EPMA J ; 13(2): 315-334, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1797482

ABSTRACT

Breast cancer incidence is actually the highest one among all cancers. Overall breast cancer management is associated with challenges considering risk assessment and predictive diagnostics, targeted prevention of metastatic disease, appropriate treatment options, and cost-effectiveness of approaches applied. Accumulated research evidence indicates promising anti-cancer effects of phytochemicals protecting cells against malignant transformation, inhibiting carcinogenesis and metastatic spread, supporting immune system and increasing effectiveness of conventional anti-cancer therapies, among others. Molecular and sub-/cellular mechanisms are highly complex affecting several pathways considered potent targets for advanced diagnostics and cost-effective treatments. Demonstrated anti-cancer affects, therefore, are clinically relevant for improving individual outcomes and might be applicable to the primary (protection against initial cancer development), secondary (protection against potential metastatic disease development), and tertiary (towards cascading complications) care. However, a detailed data analysis is essential to adapt treatment algorithms to individuals' and patients' needs. Consequently, advanced concepts of patient stratification, predictive diagnostics, targeted prevention, and treatments tailored to the individualized patient profile are instrumental for the cost-effective application of natural anti-cancer substances to improve overall breast cancer management benefiting affected individuals and the society at large.

6.
EPMA J ; 12(2): 155-176, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1300538

ABSTRACT

Cost-efficacy of currently applied treatments is an issue in overall cancer management challenging healthcare and causing tremendous economic burden to societies around the world. Consequently, complex treatment models presenting concepts of predictive diagnostics followed by targeted prevention and treatments tailored to the personal patient profiles earn global appreciation as benefiting the patient, healthcare economy, and the society at large. In this context, application of flavonoids as a spectrum of compounds and their nano-technologically created derivatives is extensively under consideration, due to their multi-faceted anti-cancer effects applicable to the overall cost-effective cancer management, primary, secondary, and even tertiary prevention. This article analyzes most recently updated data focused on the potent capacity of flavonoids to promote anti-cancer therapeutic effects and interprets all the collected research achievements in the frame-work of predictive, preventive, and personalized (3P) medicine. Main pillars considered are: - Predictable anti-neoplastic, immune-modulating, drug-sensitizing effects; - Targeted molecular pathways to improve therapeutic outcomes by increasing sensitivity of cancer cells and reversing their resistance towards currently applied therapeutic modalities.

7.
EPMA J ; 11(2): 261-287, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1103578

ABSTRACT

Severe durable changes may occur to the DNA structure caused by exogenous and endogenous risk factors initiating the process of carcinogenesis. By evidence, a large portion of malignancies have been demonstrated as being preventable. Moreover, the targeted prevention of cancer onset is possible, due to unique properties of plant bioactive compounds. Although genoprotective effects of phytochemicals have been well documented, there is an evident lack of articles which would systematically present the spectrum of anticancer effects by phytochemicals, plant extracts, and plant-derived diet applicable to stratified patient groups at the level of targeted primary (cancer development) and secondary (cancer progression and metastatic disease) prevention. Consequently, clinical implementation of knowledge accumulated in the area is still highly restricted. To stimulate coherent co-development of the dedicated plant bioactive compound investigation on one hand and comprehensive cancer preventive strategies on the other hand, the current paper highlights and deeply analyses relevant evidence available in the area. Key molecular mechanisms are presented to detail genoprotective and anticancer activities of plants and phytochemicals. Clinical implementation is discussed. Based on the presented evidence, advanced chemopreventive strategies in the context of 3P medicine are considered.

SELECTION OF CITATIONS
SEARCH DETAIL